The Challenge in Developing Geological CO₂ Storage for Industrial Southern Ontario

Richard Jackson

Geofirma Engineering Ltd., Ottawa, and Dept. of Earth & Environmental Sciences, University of Waterloo

Atelier Captage, utilisation et stockage du CO₂ au Québec : état de la situation et perspectives

15 mars 2023 Centre Eau Terre Environnement de l'INRS

Centre Eau Terre Environnement de l'INRS 490, rue de la Couronne, Québec QC G1K 9A9

The Challenge from the P.M.

At an international climate summit convened by U.S. President Joe Biden, Prime Minister Justin Trudeau said Canada will reduce emissions by 40 - 45 % below 2005 levels by 2030

Apr 22, 2021

NRCan given \$319 million over 7 years in 2021 budget to implement this pledge out of an \$8 bn Net Zero Accelerator account

The Challenge in Developing Geological CO₂ Storage for Industrial Southern Ontario

To accomplish a 40% CO₂ reduction we must consider:

- 1. Location of emitters and storage sites
- 2. Technology readiness and financial incentives for CCS
- 3. Time required to plan and construct CCS

Location of emitters and storage sites

"Our biggest challenge is to match sequestration sites to CO₂ sources."

Benson, S.M. and Cole, D.R. 2008, CO₂ Sequestration in Deep Sedimentary Formations, Elements 4:325-331.

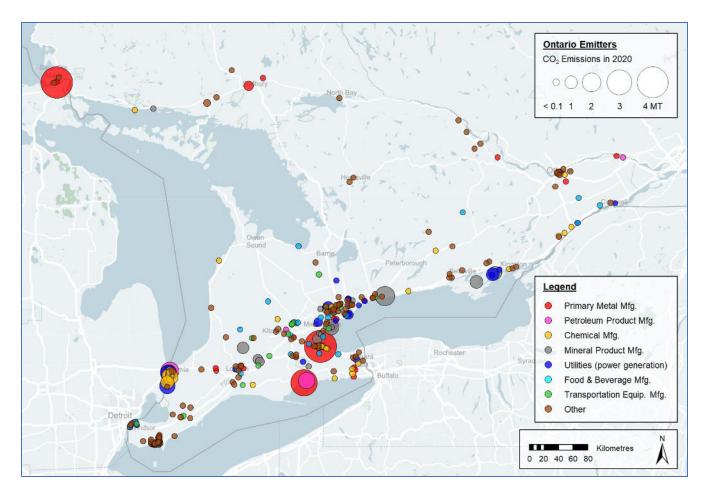
CSA Guidelines for Geological CO₂ Storage Sites

- 1. >800 m deep to allow $p_{\text{max}} \rightarrow 9$ MPa
- 2. sealed by competent caprock with minimal groundwater inflow from surrounding rock
- *3. Preferably,* near major CO₂ emitters & pipelines
- 4. *Preferably,* penetrated by few oil and/or gas wells requiring plugging
- 5. Preferably, large pore volume available for CO_2 storage so limited Δp
- 6. Preferably, few critically-stressed faults that might slip with fluid injection \rightarrow felt earthquakes!

What sites do we have for Geological CO₂ Storage?

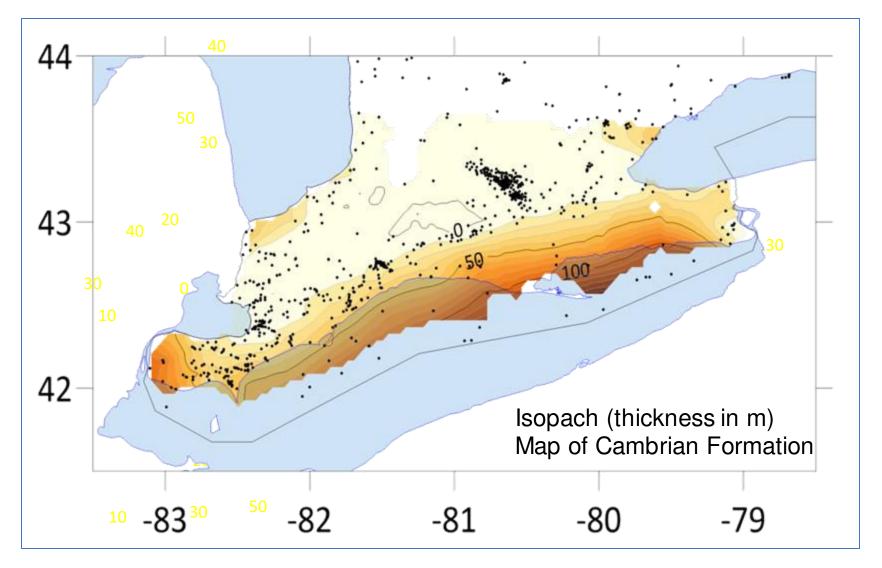
Saline Cambrian Aquifers

North Shore of Lake Erie ✓


Depleted Oil & Gas Fields

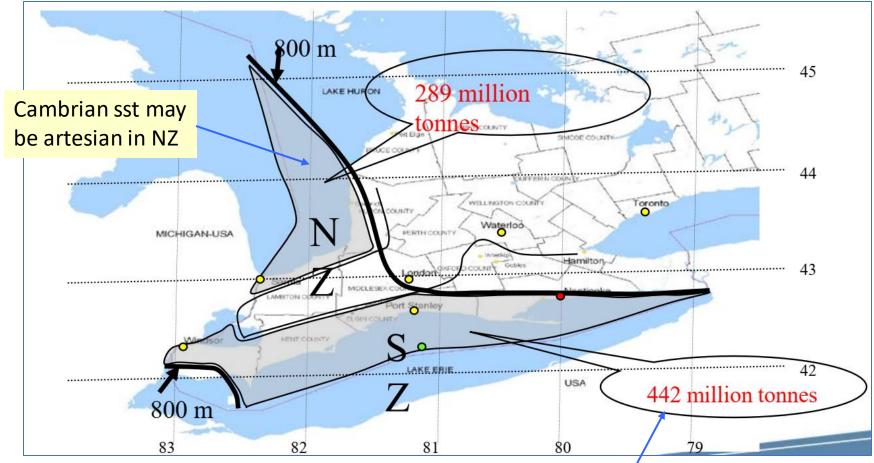
- Innerkip gas field?
- Cambrian sandstone oil fields ?
- Ordovician carbonate oil fields ?
- But, these are penetrated by hundreds of legacy wells

Location of emitters and storage sites



Industrial CO₂ sources are widely distributed but geological storage sites are limited to the north shore of Lake Erie

Location of emitters and storage sites



Prepared by Bruce Hart, Western University

Shafeen's 2004 estimate of Pore Volume storage in Cambrian sandstone

Shafeen's 2004 Cambrian sst PV estimate of 442 MT in SZ based on 10% storage efficiency and sub-lake injection

CCS investment decisions of \$1B+ require more than simple prospective volumetric estimates

- CO₂ storage hubs must be PROVEN by exploratory drilling and testing + seismic
- Followed by numerical simulation of CO₂ migration through the storage reservoir
- Cost per borehole \$5M+
- Two boreholes minimum to estimate reservoir transmissivity & compressibility
- A storage hub will require ~ \$30M

Technology readiness and financial incentives for CCS

Environ. Res. Lett. 16 (2021) 014036

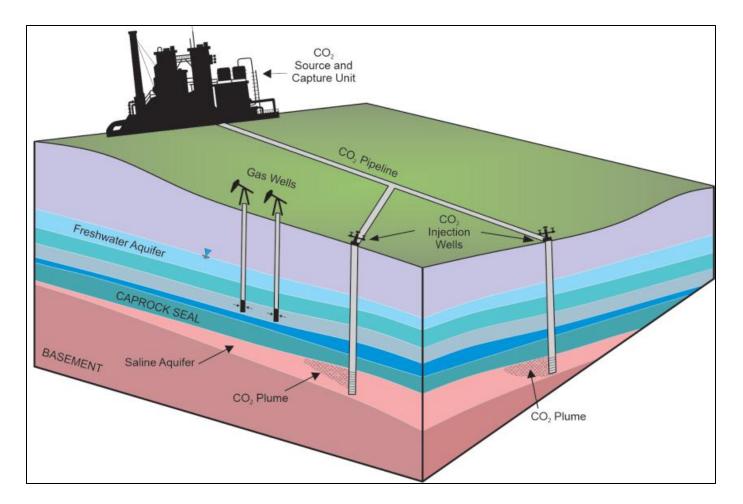
https://doi.org/10.1088/1748-9326/abd19e

ENVIRONMENTAL RESEARCH LETTERS

LETTER

Explaining successful and failed investments in U.S. carbon capture and storage using empirical and expert assessments

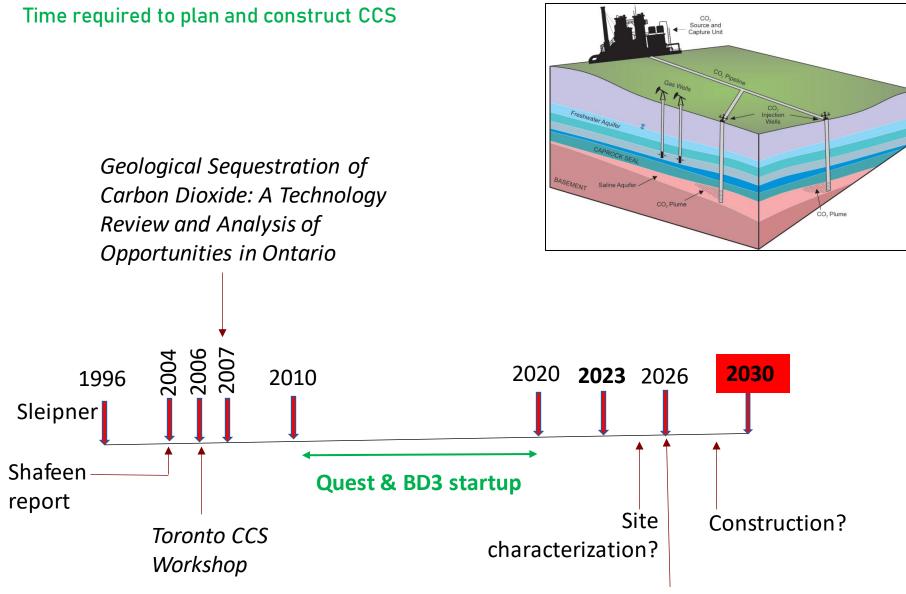
Ahmed Abdulla^{1,2}, Ryan Hanna^{2,3}, Kristen R Schell¹, Oytun Babacan⁴ and David G Victor^{2,5,6}


Results of Deep Decarbonization Initiative study:

- 1. Capital cost:
 - high CAPEX projects more likely to fail
 - Canadian ITC covers<25% of CAPEX, while 45Q provides ~²/₃ (BMO, 8/2022)
- 2. Technological readiness:
 - mature technologies are best, e.g., amine absorption capture
 - dedicated geological storage requires long development times
- 3. Credibility of project revenues:
 - Usually EOR projects or
 - dedicated geological storage at ADM Decatur project supported by DOE
- 4. Transport & CO₂ storage planning:
 - *"the degree of documentation and visibility around features like CO₂ disposal is endogenous to eliminate any risks before FID"*
 - i.e., planning the pipeline and the proving the geological storage is critical to success

Time required to plan and construct CCS

Can we develop CCS capture, transmission, and injection systems by 2030?


Storage hubs for dedicated geological storage require:

- 1. 3-8 years to develop and prove injection sites
- 2. ~ \$30M to prove available PV and CO₂ injectivity
- 3. Large-scale numerical simulation to determine Δp effects "the pressure dome" and CO₂ migration
- 4. Evaluation of reservoir continuity/compartmentalization
- 5. Hydraulic interference of neighbouring hubs?
- 6. Δp effects on caprock & basement faults?
- 7. Sealing of any penetrating legacy wells

In SW Ontario we need to prove ~10 MT annual CO₂ storage by 2025 to allow planning & construction to begin storage before 2030

Cost analysis + FID?

The Challenge in Developing Geological CO₂ Storage for Industrial Southern Ontario

- 10+ years work to be done in 7 to meet 2030 deadline
- Province has yet to establish policy & regulations
- Assuming CO₂ injection rates ~200 kT/well/yr
- 10 MT annual storage PV requires ~40 injection wells
- The first was drilled in 2022

There's always decarbonization by deindustrialization!

