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Abstract 
Morphometric analyses are based on multiparametric datasets that describe quantitatively the shapes of 
objects. The stochastic nature of fracture-formation processes that break up magma during explosive 
eruptions yields mixtures of particles that have highly varied shapes. In volcanology morphometric analysis 
is applied to these mixtures of particles with diverse shapes for two purposes: (1) to fingerprint tephra from 
individual eruptions and use the fingerprints to distinguish among tephra layers and determine their extents, 
and (2) to reconstruct eruption processes, by linking particles formed by known fragmentation processes in 
experiments with particles from natural pyroclastic deposits. Here we review the most commonly adopted 
statistical techniques for morphometric analysis of pyroclasts. We provide sets of objects with different 
shapes, along with their morphometric data, in order to demonstrate and illustrate the methods. They can be 
used not only for addressing the processes of fragmentation during explosive eruptions, but also for the 
characterization of other types of solid particles with complex morphologies.  
 
Introduction 
The use of shape descriptors in the analysis of 
juvenile pyroclasts offers many options for 
quantitative analyses and interpretation of magma-
fragmentation processes. The shapes of juvenile 
pyroclasts are highly varied, reflecting varied pre-
fragmentation magma textures and the stochastic 
nature of magma fragmentation and fracture 
processes (Lawn 1993; Dürig and Zimanowski 
2012; Dürig et al. 2012b; Taddeucci et al. 2021). 
Data analysis and interpretation thus requires the 
use of sophisticated statistical techniques. This 
article offers a review of such methods, as 
developed in the last 25 years, and intends to 
provide a morphometric “toolbox” that includes the 
most commonly used analytical and statistical 
techniques. To help readers fully exploit their 
morphometric data, we describe how to apply 
morphometry, and discuss the mathematical pre-
conditions and caveats associated with the 
statistical techniques presented. Along with the 
recommendations on data acquisition provided by 
Ross et al. (2021) and Comida et al. (2021), this 
paper intends to serve the volcanological 
community as a basis for a discussion on 

standardized protocols for the analysis of juvenile 
pyroclasts. The techniques presented here are, 
however, not limited to use with pyroclasts – they 
can be applied to any particles, and indeed to any 
set of morphometric data. 
The morphological (and possibly also textural) 
information for one grain is specified by a set of M 
variables (i.e., shape parameters), which might or 
might not be statistically independent from one 
another. Two-dimensional shape parameters can 
range from descriptors of basic geometrical 
characteristics (e.g., Dellino and La Volpe 1996; 
Cioni et al. 2014; Leibrandt and Le Pennec 2015; 
Liu et al. 2015) to more complex parameters that 
are the result of fractal analysis (Dellino and 
Liotino 2002; Maria and Carey 2002) and curvature 
plots (Tunwal et al. 2020) or extracted from Fourier 
shape analysis (Barrett 1980; Suzuki et al. 2015; 
Chávez et al. 2020). In recent years, novel scanning 
techniques have allowed the retrieval of 3-
dimensional shape parameters, such as, e.g., fractal 
dimension (Rausch et al. 2015; Vonlanthen et al. 
2015; Dioguardi et al. 2017), aspect ratio of the best 
fit ellipsoid (Vonlanthen et al. 2015) or 3D-
sphericity (Mele et al. 2011; Vonlanthen et al. 



2015; Dioguardi et al. 2017). An N x M matrix of M 
variables describing N particles is defined as a 
“morphometric data set” (Dürig et al. 2020c). An 
example of a morphometric data set is a table with 
shape parameters for randomly collected tephra 
grains at a certain location, or for juvenile particles 
extracted from a specific size fraction of a certain 
pyroclastic bulk sample. To compare two 
morphometric data sets, each set should ideally be 
of equal size, allowing comparison of N x M values. 
A typical analysis for 50 grains per sample or size 
fraction (e.g., Dürig et al. 2018; Comida et al. 2021; 
Ross et al. 2021) and four shape parameters per 
grain (Dellino and La Volpe 1996; Dürig et al. 
2012a) requires cross-comparisons among 200 
individual values in the data set. This is what 
multivariate statistical methods are designed to 
accomplish.  
The typical goals of morphometric data analysis 
are: 

 to provide a quantitative summary of 
particle shape descriptors that complements 
other data (such as grain size, componentry 
or stratigraphic information); 

 to compare two or more data sets with one 
another, in order to investigate whether 
they are statistically equivalent or instead 
show significant differences;  

 to determine the fragmentation 
mechanism(s) that generated the pyroclasts 
and help reconstruct eruption processes. 

The data-analysis representations and the statistical 
techniques to be used for reaching the three 
aforementioned goals are described in the following 
sections. They are intended as step-by-step guides 
and recommendations for the statistical tests and 
techniques to be used. To demonstrate them we 
provide a set of artificial 2D silhouettes (see Fig. 1 
and Fig. 2). Supplementary data (Online Resource 
1) includes all the binary images and their 
morphometric descriptors. Furthermore, we use 
silhouettes of 88-63 µm (narrow +4ϕ) sized ash 
particles sampled from the 1959 Kīlauea Iki 
eruption (Hawaii), and the 2012 Havre eruption 
(Kermadec arc) to illustrate the use of 
discriminatory diagrams. These silhouettes and the 
obtained shape parameters can be retrieved from 
Online Resource 2. 
We note that all statistical analysis described below 
can be applied to any shape parameters. For 
demonstration we use the parameters suggested by 
Dellino and La Volpe (1996), consisting of 
circularity Circ_DL, elongation Elo_DL, 
rectangularity Rec_DL and compactness Com_DL, 
defined by: 

    

 𝐶𝑖𝑟𝑐_𝐷𝐿 √
 (1) 

where A is the projected area of the particle’s 
silhouette, and p its perimeter. 

𝐸𝑙𝑜_𝐷𝐿  (2) 

with a being the longest segment inside the particle 
parallel to the long side of the minimum area 
bounding rectangle, and m being the mean intercept 
perpendicular to a. 
    

 𝑅𝑒𝑐_𝐷𝐿  (3) 

where b and w are the long and short side of the 
minimum area bounding rectangle, respectively. 
The compactness is defined by: 
    

 𝐶𝑜𝑚_𝐷𝐿
∙

  (4) 

 
Descriptive morphometry 
Summarising statistical reports 
The underlying data for morphometric analyses 
consist of morphometric data sets and images of 
particles or particle silhouettes. It is best practice to 
append these raw data to a publication (Ross et al. 
2021), or to lodge them in an open-access data 
archive, linked from the publication. For each data 
set, at least the sample size (N) and both mean and 
standard deviation for each of the measured 
parameters should also be presented in a data table. 
In addition, providing the minimum and maximum 
value, or the median (50% percentile) can support 
additional interpretations. For example, a median 
that differs considerably from the mean indicates 
the presence of outliers that might deserve further 
exploration. Since some of the multivariate 
statistical tests require that samples are normally 
distributed, it is also useful to calculate the kurtosis 
and skewness for each parameter (indicating the 
distribution’s “tailedness” and its asymmetry, 
compared to its mean). A “perfectly” normal 
distribution is characterized by a value of 0 for both 
kurtosis and skewness (Davis 2002).  Table 1 
shows how such basic statistics can be presented. 
 
Binary diagrams 
The distribution of each parameter can be presented 
in frequency plots (i.e., histograms, see Fig. 3a). 
These can be arranged as matrices, sorted by 
parameter (columns) and stratigraphic sampling 
location (rows) (see Dellino and La Volpe 1996; 
Coltelli et al. 2008). A more compact presentation 
of data uses range plots, which display the total 
span of the respective parameters as horizontal bars 



along a stratigraphic axis. Outliers may be 
overemphasized in range plots, and this can be 
overcome by using “boxplots”, which indicate the 
distribution’s quartiles (Fig. 3b). The morphometric 
range plots or boxplots can be arranged together 
with other parameters of interest, such as grain size 
or chemical composition (see e.g., Verolino et al. 
2019).   
A quick way to visualize data sets is to prepare 
binary diagrams, using one parameter per axis (e.g., 
Fig. 3c and 3d). For M parameters, this approach 
results in ∑ 𝑖 diagrams. For example, if using 
four shape parameters, six unique pairs need to be 
prepared. Depending on one’s objective this may 
work well initially, with a relatively small database. 
Some of the examples listed in Table 2 are binary 
diagrams that have been used in morphological 
studies for interpretation of underlying ash 
generation processes. We anticipate, however, that 
binary plots will become confusing when data from 
different volcanoes and different eruptive styles are 
brought together. More sophisticated methods of 
data analysis and presentation are thus needed.  
 
Comparison of morphometric data sets 
Morphometric data analysis is useful for comparing 
tephra from different eruptions or eruptive phases 
(e.g., Dellino and La Volpe 1996; Taddeucci et al. 
2002; Cioni et al. 2008; Iverson et al. 2014; 
Verolino et al. 2019) and for linking characteristics 
of particles from experiments with those coming 
directly from a pyroclastic deposit (e.g., Büttner et 
al. 2002; Dürig et al. 2012a, 2020b; Schipper et al. 
2013; Jordan et al. 2014).  
 
Testing for equality of variances 
Before comparing two or more data sets with one 
another one must test their levels of variance, 
because the best approach to subsequent analysis 
depends on whether the variances of the data sets 
are equal within an acceptable range. Thus, when 
planning a comparative morphometric analysis, the 
first step is to test the equality of variances (Mele et 
al. 2011). A common test tailored for such a task is 
the F-test, named after the Fisher-Snedecor 
probability or “F” -distribution. The F-test 
evaluates two data sets against the null hypothesis 
H0 that their variances are equal, by comparing the 
ratio of their variances (“F-scores”) with a critical 
threshold that is specified by the selected level of 
significance α (Davis 2002). Typically, 5% is 
selected for α. Using the F-distribution and a 
lookup table, the F-score is translated to a “p-
value”, which gives the error likelihood of 
incorrectly rejecting the null hypothesis. If the p-
value is smaller than α, H0 can be rejected. In this 

case the F-test has shown that the variances of the 
two tested data sets are heterogeneous.  
The “Levene test” expands the F-statistic to allow 
also the comparison of variances of more than two 
data sets (Levene 1960). Other than that, this type 
of test is equivalent to the F-test and serves the 
same purpose (Dürig et al. 2012a).  
The Levene test was explicitly designed to be 
robust against violation of normality, whereas F-
tests assume data sets with normal distributions. In 
practice, however, F-tests have also been shown to 
be very robust even when used with non-normally 
distributed data (Donaldson 1968). 
For reporting the outcome of F-tests or Levene-tests 
(Fig. 4a and Table 3) we recommend that the 
analyst provides the p-values along with α. Note 
that choosing any level of significance, α, other 
than 5% requires explicit justification. 
 
Two-tailed t-tests 
A common task in morphometry is to verify that 
differences in the means of two data sets are 
statistically significant, given the sizes of the data 
sets and their standard deviations. A two-tailed t-
test is commonly used in such cases (e.g., Dellino 
et al. 2001; Büttner et al. 2002; Mele et al. 2011; 
Dürig et al. 2012a, 2020b, a; Schipper et al. 2013; 
Jordan et al. 2014; Schmith et al. 2017). The test 
begins with the null hypothesis H0 stating that both 
groups (the two pyroclastic samples being 
compared) are extracted from the same population.  
Two different types of t-tests exist, depending on 
the data sets’ homogeneity of variances. When the 
variances of the two data sets can be inferred to be 
equal, a pooled variance “Student’s t-test” (Student 
1908; Davis 2002) is used. With 𝑋1, 𝑋2 being the 
means, s1 = s2 the standard deviations, and N1, N2 
being the sample sizes of the two data sets, the t-
value is computed according to: 
     

 𝑡 𝑋 𝑋
  (5) 

using the pooled standard deviation sp, defined as: 

𝜎 ∙ ∙
  (6) 

If, instead, the variances of the two data sets are 
different (e.g., as indicated by a Levene test), it is 
better to apply a separate variance or “Welch’s t-
test” (Welch 1947), in which the t-value is 
computed by: 
     

 𝑡 𝑋 𝑋
  (7)  



In both cases the t-values follow the Student’s t-
distribution curve, with which they can be 
translated into a “p-value”. This parameter 
expresses the probability that test results under the 
assumption of H0 are at least as extreme as the 
observed outcomes. A very low p-value therefore 
represents a very low probability that H0 is true. If p 
is below a pre-defined level of significance α, the 
null hypothesis can be rejected: the data sets are 
therefore “significantly different” under the tested 
hypothesis (Davis 2002). Usually, a level of 
significance of 5% is used, although sometimes 
10% has been chosen for morphometric studies 
(Büttner et al. 2002). We recommend that 
researchers report the results of each t-test by 
providing the type of t-test conducted (or, 
alternatively the p-value of the previously 
conducted test for equality of variance), the p-
value, the sample sizes N1, N2 and the selected level 
of significance (see Table 3 and Fig. 4b).  
We note that t-tests are parametric; they assume 
random sampling and that the tested data sets are 
normally distributed. These conditions may not be 
met, but t-tests are popular because they show a 
certain degree of robustness against violations of 
the assumption of normality. For example when 
using t-tests, Type I errors (i.e. indicating a 
significant difference, when in reality there is none) 
are relatively low, when:  
• comparing data sets with samples from two 
different shape of distributions and unequal sizes, 
but equal variances (Havlicek and Peterson 1974); 
• comparing data sets with samples from 
non-normal distributions and unequal variances, but 
comparable sizes (Ahad and Yahaya 2014). 
Type I errors are, however, significantly increased 
when multiple types of inhomogeneities coincide, 
e.g. unequal variances, non-normal distributions 
and unequal sample sizes (Ahad and Yahaya 2014). 
To avoid these Type I errors, analysts should apply 
t-tests to data sets with sample sizes N that are not 
too different from one another. Testing the 
normality of the data sets with Shapiro-Wilk or 
Kruskal-Wallis tests (Davis 2002) and listing their 
possible kurtosis could further help demonstrate the 
validity of t-test results, but it is not strictly 
mandatory.  
When the condition of random sample selection is 
not fulfilled (which is common in geological 
investigations), the reliability of a t-test is 
considerably reduced, especially if the same data 
set is repeatedly used for different comparisons 
(Bender and Lange 2001). As an example, think of 
three data sets (“A”, “B”, “C") which should be 
compared with each other. After having tested “A” 
with “B”, a subsequent t-test comparing “A” with 
“C” would use the sample “A” for a second time 

and therefore violate the “random selection” 
condition. This leads to an increase in the 
likelihood of a Type I error. To counter this effect, 
a so called “post-hoc correction” has to be applied, 
for example using a Bonferroni correction 
(Bonferroni 1936). Such corrections, however, 
increase the likelihood of Type II errors (genuine 
differences are no longer detected) and reduces the 
t-test’s statistical power (Perneger 1998; Bender 
and Lange 2001). 
As a general guideline, when planning to repeatedly 
apply t-tests, the use of different randomly selected 
subsets of data sets is advised. If this is not feasible, 
a post-hoc correction should be applied. 
Alternatively, applying a one-way analysis of 
variances (ANOVA) or Dendrogrammatic Analysis 
of Particle Morphometry (DAPM) might be a better 
option. 
 
One-way Analysis of Variances (ANOVA) 
The term “ANOVA” refers to statistical procedures 
that serve to verify the differences of means across 
multiple data sets, based on tests that follow the F-
distribution. In contrast to t-tests, ANOVA is 
designed to simultaneously test more than two data 
sets for significant differences (Davis 2002). The 
ANOVA’s null hypothesis is: H0: µ1 = µ2 = µ3 =…= 
µn with µi being the mean of the i-th compared data 
set out of n. The alternative hypothesis H1 is that at 
least one of the means is significantly different. As 
with F-tests, the F-values are computed and 
translated into an error likelihood p of improperly 
rejecting H0. H1 is verified if p < α (the level of 
significance). When reporting results of ANOVA, 
we recommend reporting both α and resulting p -
values (see Table 4).  
ANOVA assumes that data sets (Davis 2002):  

a) are composed of randomly selected 
samples; 

b) contain normally distributed samples; 
c) have homogeneous variances. 

These tests have been shown to be robust against 
violations of condition b) and c), particularly in 
cases where sample sizes are not too dissimilar 
(Ersoy et al. 2006; Blanca et al. 2017). We 
recommend to always use ANOVA analyses with 
similar-sized data sets. 
In analogy to t-tests, Type I errors increase when 
using a data set for several repeated tests with 
ANOVA. To reduce Type I errors, post-hoc 
corrections can be applied. The most appropriate 
correction method depends on the validity of 
condition c). Examples of post-hoc corrections are:  

 the Tukey’s range test (also known as 
Tukey honestly significant difference) for 
data sets of homogeneous variances (Tukey 
1949) 



 the Games-Howell post-hoc adjustment 
(Games et al. 1979) which is a good option 
for testing data sets of heterogeneous 
variances.   

Instead of just reporting whether H1 is verified, 
post-hoc correction methods provide n x n matrices 
with adjusted p-values for all n tested data sets. 
However, like post-hoc corrections for t-tests, these 
adjustment procedures come with the cost of 
decreased statistical power, which becomes evident 
when comparing large numbers of data sets (Dürig 
et al. 2020c). 
 
Equivalence tests (e-tests) 
The failure of a two-tailed t-test or ANOVA to 
demonstrate a difference between data sets is not 
sufficient to mathematically prove similarity of two 
data sets (Walker and Nowacki 2011). For example, 
let us assume we are comparing the mean 
circularity of +1 phi juvenile clasts extracted from 
two pyroclastic samples, using a two-tailed t-test as 
described above. Thus, the null hypothesis H0 is 
that both groups are extracted from the same 
population, because with the two-tailed t-test, we 
are hoping to reject H0 by getting a p-value below 
α. That would demonstrate statistically – with a 
certain confidence level (1-α) – that there is a 
significant difference in the means. If instead the p-
value is greater than α, we fail to reject H0, but that 
does not imply that we can automatically accept 
H0. To actually conclude that our +1 phi juvenile 
clasts are all likely to be derived from the same 
population, a different statistical test is needed, with 
different hypotheses. 
A statistical method introduced to verify the 
equivalence of morphometric data sets is the 
equivalence test, or “e-tests” (Dürig et al. 2012a). 
An e-test checks whether the mean µ and the 
confidence interval Δ = [-C;C] of a data set lie 
within an acceptable range, specified by an 
equivalence margin Dmax, so that (Rasch and Guiard 
2004; Wellek 2010):  
µ  𝐷𝑚𝑎𝑥 µ  𝐶 µ µ  𝐶 µ  𝐷𝑚𝑎𝑥
   (8) 
For verification, an e-test uses one-tailed t-tests for 
each side of the equivalence margin, testing the 
composed null hypotheses H01: µ - C < µ - Dmax and 
H02: µ + C > µ + Dmax. If the one-tailed t-test results 
lead to a rejection of both null hypotheses, 
relationship (8) is valid and statistical equivalence 
is verified (Rasch and Guiard 2004; Wellek 2010; 
Dürig et al. 2012a). 
The ‘classic’ e-tests used exclusively Student’s t-
tests and could therefore only provide reliable 
results for data sets with homogeneous variances 
(e.g., Dürig et al. 2012a). With the recently 
published free and open software DendroScan 

(Dürig et al. 2020a), the range of application has 
been extended for cases of inhomogeneous 
variances by also including Welch’s t-tests to the e-
test procedures. Since e-tests are based on t-tests, 
the same conditions and assumptions apply. 
The validity of e-tests depends on the quality of the 
pre-defined equivalence margin. An 
underestimation of Dmax would result in a corridor 
that is too small, and therefore in Type II errors, 
where equivalences remain undetected. Conversely, 
overly large values would lead to Type I errors. It is 
therefore crucial to provide, along with p-values 
and α, also the Dmax values when reporting the 
results of e-tests.  
Since equivalence margins are specific to each 
shape parameter and each case (i.e., eruption or 
eruptive phase) (Dürig et al. 2012a, 2020b), a 
common strategy to find the appropriate Dmax 
values is to use tailored calibration tests on so 
called “standards”, i.e. subsamples of grains 
coming from the same population as the one to be 
tested. For calibration, e-tests are reiteratively 
computed for each shape parameter, by increasing 
the Dmax values stepwise (e.g., by 0.01, with an 
initial value of 0.01), until the e-tests indicate 
statistical equivalence in all shape parameters 
(Dürig et al. 2020c, a). 
For demonstration, the morphometric data set “d” 
(Fig. 2) is statistically tested for equivalency with 
data set “a” (Fig. 1). With this aim, e-tests are 
computed with DendroScan by using the data sets 
“AA”, ”AB” and “AC” (see Online Resource 1) as 
standards. According to the results (see Fig. 5), “a” 
and “d” can be treated as statistically equivalent.  
 
Principal component analysis (PCA) 
The statistical tests described thus far must be 
applied separately for each shape parameter. A 
morphometric comparison of M parameters requires 
the execution of at least 2 x M tests (for example, in 
the combination of F-tests and two-tailed t-tests). 
The number of results quickly becomes large and 
difficult to present, in the same way as does the 
presentation of multiple binary diagrams (see 
previous section).  
In mathematical terms, each pyroclast can be 
represented by a data point in an M-dimensional 
vector space. Principal component analysis 
(“PCA”) is a multivariate method that can be used 
to reduce the dimensions of this vector space 
(Maria and Carey 2002; Scasso and Carey 2005; 
Cioni et al. 2008; Suzuki et al. 2015; Schmith et al. 
2017; Nurfiani and de Maisonneuve 2018; Pardo et 
al. 2020). In other words, PCA can reduce the 
number of variables in a way that retains as much 
of the original information as possible. It can also 
be used to explore the relationships among the 



original variables. PCA initially extracts M factors 
(denoted “principal components”) by finding linear 
combinations of the original variables in the M-
dimensional space. The principal components are 
constructed to be orthogonal to one another (so as 
to be statistically independent), and their length is 
proportional to the total variance of the original 
data set. Next, the M principal components are 
sorted by their total variances (e.g., see Table 5). 
These total variances quantify the variance that can 
be explained by the principal components alone and 
are also denoted “Eigenvalues”. The number of 
components extracted is based on a compromise 
between analytical tractability and loss of 
information. A typical decision criterion is the 
Kaiser normalization criterion (Kaiser 1958; Davis 
2002), which suggests that only principal 
components with an Eigenvalue of 1 or larger be 
considered. PCA is particularly useful in complex 
multivariate analysis, when dealing with a 
multitude of different parameters, e.g., from 
different morphometric systems, to reveal 
redundancies (i.e., variables that actually do not add 
additional information) and to help find the most 
meaningful parameters. 
In a simple example shown by Table 5, we applied 
PCA to four shape parameters. This approach 
would lead to the use of principal components 1 
and 2 and therefore a dimensional reduction from 
four to two.  
Table 6 (left) shows the Pearson correlation 
coefficients for each variable and component, 
denoted “factor loadings”. Often, it is useful to 
redistribute the factor loadings in a way that 
facilitates interpretation of a component’s meaning. 
A typical approach for achieving this goal uses the 
“varimax rotation” (Davis 2002), which rotates the 
components (and with them the coordinate axes), 
but keeps the components orthogonal. Table 6 
(right) provides an example of the resulting 
component matrix after such a rotation: now 
component 1 can be seen as a measure of Circ_DL 
and Rec_DL, while component 2 is mainly 
measuring Com_DL and Elo_DL.  
For each of our demonstration data sets (Fig. 1, Fig. 
2) the resulting component scores are listed (see 
Online Resource 3). For four data sets, Figure 3e 
shows the (unrotated) principal components. Data 
points of four objects were individually tagged in 
Figures 3c through 3f to ‘track’ them. For example, 
Figures 3c and 3d show that “b50” (black triangle 
within a black circle) is characterized by high 
circularity and rectangularity, medium compactness 
and low elongation. Although the (unrotated) 
components contain this information, it is difficult 
to reconstruct it from Figure 3e. Only after the 
“varimax” rotation (Fig. 3f) does it become 

apparent that “b50” is characterized by a large 
value for rotated component 1 and a low value for 
rotated component 2. According to the resulting 
rotated-component matrices (Table 6), we know 
that the first rotated component is strongly 
correlated with circularity and rectangularity, 
whereas the second one shows a positive 
correlation mostly with elongation and is negatively 
correlated with compactness. It is hence possible to 
infer the original shape parameters from Figure 3f. 
Although this example only includes four original 
variables, PCA would become even more useful if 
10 or 20 morphometric parameters were involved. 
When presenting PCA results, it is mandatory to 
specify the decision criterion used to choose the 
level of dimensional reduction (in our example: 
“Kaiser normalization criterion”) and type of 
rotation (here: “varimax”) applied. Along with the 
total variances (Table 5) and the resulting 
component scores for each sample, it is also 
recommended that resulting component score 
coefficients be reported. Such a table is also known 
as a “Component Score Coefficient Matrix” (e.g., 
Table 7).  
The resulting principal components are statistically 
independent variables. PCA can therefore be used 
as a first step for the subsequent application of 
statistical methods that require independent 
variables, such as discriminant function analysis 
(see next section). 
 
Factor analysis 
Being closely related to PCA, factor analysis 
methods, such as the R-mode type factor analysis 
(Dellino and La Volpe 1996; Davis 2002; Dellino 
and Liotino 2002) are used to reduce the number of 
explanatory variables (i.e., morphometric 
parameters) without losing relevant information. As 
for PCA, the original variables are linearly 
combined to construct the equivalent to principal 
components, which are (unsurprisingly) named 
“factors”. In contrast to PCA, however, factors are 
not orthogonal, and therefore not independent 
variables. Instead, the new axes are orientated in a 
way that optimally describes the original data 
variances. Factor analysis can be used (1) as a data 
reduction method, although PCA may be better 
suited for this, (2) as an “exploratory” tool, in order 
to find hidden and not directly measurable 
(“latent”) dependencies between variables that 
explain the distribution of factor scores, or (3)  to 
test the validity of an a priori model (“confirmatory 
factor analysis”). In the context of morphometry, to 
our knowledge, only the first usage has been 
applied so far (Dellino and La Volpe 1996; Dellino 
and Liotino 2002). We strongly recommend that 
researchers report factor scores along with the 



factor loadings, eigenvectors and score weights, 
since all of these parameters are required for a full 
analysis and interpretation of the data (Dellino and 
La Volpe 1996; Davis 2002; Dellino and Liotino 
2002).  
 
Cluster analysis 
Cluster analysis is the collective term for a suite of 
exploratory statistical techniques to sort 
observations (here: particles) according to their 
relatedness and assign them to relatively 
homogeneous groups (“clusters”). When applied to 
morphometric data sets, the members of such 
clusters are characterized by sharing a set of 
features, while simultaneously being distinct from 
members of the other clusters (Dellino et al. 2001; 
Davis 2002). Analysing these groupings and 
investigating common links that connect the 
members of a cluster play an important role in 
morphometric analysis and are used to infer the 
influences of eruptive processes on particle 
formation (Dürig et al. 2020c). The 
implementations of cluster analysis are many. In 
the following we concentrate only on those most 
commonly used in morphometry: hierarchical 
cluster analysis and the k-means procedure.  
 
Hierarchical cluster analysis 
Hierarchical cluster analysis can be further 
differentiated into “agglomerative” and “divisive” 
analyses. 
An agglomerative hierarchical cluster analysis 
starts with a single observation (i.e., pyroclast), 
treating it as a preliminary cluster. From the 
remaining particles, the one identified as “most 
similar” to the first one is joined. This procedure is 
repeated until all pyroclasts are included.  
The “divisive” hierarchical cluster analysis works 
in reverse (“top-down”): starting with all particles 
as one cluster, the algorithm partitions it into two 
least-similar sub-groups. This procedure is 
reiterated for each sub-group, then repeated to the 
next cluster level and so on.  
The algorithm’s decision on which particle to add 
(or, in the divisive class of cluster analysis, where 
to divide the original cluster) depends on:  

 what is used as a measure of dissimilarity;  
 which points within the clusters are used as 

references for measuring the group’s 
distance (known as linkage in the context 
of cluster analysis).  

In morphometric cluster analysis, common 
measures of dissimilarity are the normalized 
Euclidian distance (Dellino et al. 2001; Maria and 
Carey 2002; Cioni et al. 2008) or the squared 
Euclidian distance (Rausch et al. 2015). A specially 
defined distance is used in DAPM (see below). 

Linkages commonly used in morphometric cluster 
analyses are: “single linkage” (Dellino et al. 2001), 
where the clustering algorithm computes the 
distances between the nearest neighbours, or 
“complete linkage“ (Maria and Carey 2002; Dürig 
et al. 2020c), which uses the farthest neighbours of 
each group. Other examples include “average” or 
“median” linkage (Davis 2002). With the plethora 
of implementations of this method, it is critical that 
researchers provide sub-type, measure of 
dissimilarity and linkage method used when 
publishing results obtained by a hierarchical cluster 
analysis. 
In morphometric studies, hierarchical cluster 
analyses has often been applied at the level of 
individual pyroclasts (Maria and Carey 2002; 
Rausch et al. 2015), in order to group clasts of 
similar origin. Occasionally the means of measured 
shape parameters for groups of pyroclasts have 
been used instead (e.g., Dellino et al. 2001), and in 
this case it is critical to clearly explain the contents 
of the groups, and how particles were assigned to 
each group. 
Any in-built correlation between shape parameters 
would result in a bias in the actual groupings based 
on the Euclidean distances. In order to reduce this 
effect, hierarchical cluster analyses are often 
combined with principal component analyses, and 
applied to the statistically independent principal 
components found (Maria and Carey 2002; Cioni et 
al. 2008).   
The output of a hierarchical cluster analysis is a tree 
diagram, or “dendrogram”, that displays the 
dissimilarities among the tested shapes. An 
example of a dendrogram is shown in Fig. 6. It is 
the result of an agglomerative hierarchical cluster 
analysis, constructed on data sets “a”, “b”, “c” and 
“d”, using the squared Euclidean distance with 
complete linkage. From the example, it is evident 
that interpretation of the groupings illustrated in the 
dendrogram is not trivial; this is because 
differences among individual particles within data 
sets causes the particles to be grouped into different 
clusters. For example, from Figure 6 it is not 
immediately clear that data sets “a” and “d” are, in 
fact, statistically equivalent.  
 
k-means procedure 
The k-means procedure, introduced by MacQueen 
(1967), is a special type of cluster analysis. In 
contrast to a hierarchical cluster analysis, where the 
number of clusters k is provided as output, the k-
means procedure works with a user-defined fixed 
value for k. It classifies the data by assigning it to 
the k clusters and computes their centroids. The 
algorithm begins by randomly selecting k data 
points as initial seeds (Davis 2002). It then assigns 



the N observations to the “most similar” seeding 
points, by using the minimum increase of variance 
as decision criteria. Using the centroids of each of 
the k clusters as the next seed, this procedure is 
reiterated, until stable centroids of the clusters (k-
means) are obtained (Davis 2002).  
The k-means procedure can be used when the user 
can guess the number of clusters into which the 
data will/should cluster. A possible field of 
application is data reduction, by replacing the 
individual data points with data from the k 
centroids. Another use of the k-means procedure is 
to explore similarities among morphometric data 
sets with varying k. For example, using k = 3 and k 
= 2 in a comparison of volcanic ash samples from 
three different volcanoes, researchers provided 
information about the degree to which each volcano 
has tephra that can be distinguished from those of 
other volcanoes (Avery et al. 2017).  
For demonstration, let us assume our aim is to find 
out which of the three sets of objects “a”, “d” and 
“e” (see Figs. 1-2) show the highest morphometric 
similarity, based on the four shape parameters by 
Dellino and La Volpe (1996). We start by applying 
the k-means procedure using k = 3 and compare the 
outcome with the results for k = 2 (see Fig. 7 and 
Online Resource 4). For illustration purposes, after 
application of the k-means procedure, we applied 
PCA with varimax rotation and plotted the two 
principal components to illustrate the clusters. 
For k = 3 (Fig. 7a), all objects of group “e” were 
assigned to cluster 1 (red), whereas the bulk of “a” 
and “d” objects were grouped into cluster 2 (blue). 
Cluster 3 (green) comprises only two objects (one 
from sample “a” and one from “d”). For k = 2 (Fig. 
7b), all objects of “e” are members of cluster 1 
(blue), whereas most members of “a” and “d” were 
assigned to cluster 2 (red). We can infer from these 
results that the shapes of “a” and “d” objects are 
overall more similar to each other than to those 
from sample “e”. 
Although data clustering is a useful method for data 
exploration, interpretation of the cluster 
assignments may become complex and is somewhat 
user-dependent. Also, the k-means procedure 
requires normality of input data (implying large 
sample sizes) and is less robust than, e.g., the e-test. 
When publishing results of the k-means procedure, 
the initial conditions, along with the coordinates of 
the k centroids, need to be reported to facilitate 
interpretation of groupings. 
 
Dendrogrammatic Analysis of Particle 
Morphology (DAPM) 
DAPM is a recently published technique designed 
for comparative analysis of multiple data sets 
(Dürig et al. 2020c). Technically, it can be seen as a 

special variant of hierarchical cluster analysis 
which combines all the aforementioned statistical 
tests (F-tests, ANOVA, two-tailed t-tests and e-
tests) in order to produce dendrograms displaying 
degrees of dissimilarity among data sets. In contrast 
to the other types of cluster analyses, which are 
usually applied to individual particles (Maria and 
Carey 2002; Cioni et al. 2008; Rausch et al. 2015), 
DAPM is tailored for analysis of dissimilarities and 
similarities among different data sets, each 
representing many particles, by means of their 
variances. 
When analysing Q data sets, the DAPM’s initial 
step is to compare all data sets with M shape 
parameters by F-tests, followed by ANOVA with 
the appropriate post-hoc correction (Tukey’s range 
test or Games-Howell post-hoc adjustment). 
Starting from these results, the elements of a 
distance matrix X are computed by: 
 𝑋 ∑ 𝑌    (9) 
where Yijk is calculated according to: 
     𝑌

𝑙𝑜𝑔 1 𝑖𝑓 𝑝 0.05 

0                     𝑖𝑓 𝑝 0.05
       

  (10) 
and pijk is the ANOVA’s p-value of data set i tested 
with the one from data set j in the k-th shape 
parameter. 
The use of the entries of X as measures of 
dissimilarity, along with the complete linkage 
method, allows the construction of a “level 1” 
dendrogram, which groups the Q data sets 
according to their relative morphometric 
differences (Dürig et al. 2020c). 
If the number of data sets is relatively large (Q > 7 
(Dürig et al. 2020a)), this initial sorting is to be 
treated as preliminary because, according to the 
considerations above, the statistical power of 
ANOVA is expected to be low. Still, the level 1 
diagram can be used to identify the main 
morphometric clusters and to split the Q data sets 
into sub-sets, for which the computation procedure 
of X is repeated, resulting in several “level 2” 
dendrograms. By increasing stepwise the “levels”, 
this procedure is reiterated for each of the new sub-
clusters, until no further cluster separation is 
possible.  
Data sets grouped with a dissimilarity of 0 
represent the highest level dendrograms. They are 
tested, by using the M shape parameters, with two-
tailed t-tests.  
The data sets that “fail” the t-tests (i.e., no 
significant differences indicated for any of the M 
shape parameters), are submitted to e-tests, using 
pre-defined equivalent margins.  



With this procedure, it is not only possible to sort 
multiple data sets according to their ANOVA-
verified dissimilarity, but also to identify those data 
sets among them that are statistically equivalent 
according to a clear set of rules. This is useful, for 
example, in linking pyroclasts obtained from 
experiments with natural ones.  
Recently released freeware, which allows the 
analyst to perform a DAPM automatically, is 
DendroScan (Dürig et al. 2020a). An example of a 
DAPM-based dendrogram is provided in Figure 8.   
The use of eq. (9) in the construction of the 
distances X could lead to an overestimation of some 
morphologic features, especially when there is an 
underlying correlation between some of the shape 
parameters. The decision about which parameters to 
select for DAPM should therefore be based on the 
final aim of the analysis. If the aim is to identify the 
most significantly different data sets, and separate 
them from those which are statistically equivalent, 
it is recommended to use all the shape parameters. 
This approach ensures completeness of the 
morphological features in DAPM. If the aim is, 
instead, to interpret the degree of dissimilarities 
between significantly different data sets, it is 
advisable to use a reduced set of statistically 
independent parameters (Dürig et al. 2020a), 
possibly by using binary diagrams to ensure the 
absence of correlation. 
When publishing results from DAPM, researchers 
should include the shape parameters, Dmax values 
and level of significance α used, along with the 
dendrograms produced at the highest data levels. In 
addition, the distance matrices X might be provided. 
Researchers must state the linkage used for 
computing the dendrograms. 
 
Determination of fragmentation mechanism 
and eruptive style 
Discriminative and interpretive diagrams 
An important application of morphometric analysis 
is in the classification of tephras according to their 
genesis, for example the distinction of ash produced 
by phreatomagmatic versus magmatic 
fragmentation processes. Qualitative schemes of 
tephra classification by particle morphology have a 
decades-long history (Heiken 1974; Wohletz 1983; 
Büttner et al. 1999; Taddeucci et al. 2002; White 
and Valentine 2016; Németh and Kósik 2020). 
Some attempts have also been made to develop 
user-independent methods for quantitative and 
reproducible classification (e.g., Büttner et al. 2002; 
Murtagh and White 2013; Schmith et al. 2017). The 
most common method for discriminating among 
eruption mechanisms is to plot samples in 
classification diagrams (for examples, see Table 2) 
that distinguish fields of different eruptive 

conditions. Plots used for discriminative 
interpretation range from simple binary diagrams 
(e.g., Cioni et al. 2014; Leibrandt and Le Pennec 
2015; Liu et al. 2015), to diagrams plotting 
combinations of shape parameters (Büttner et al. 
2002; Murtagh and White 2013; Iverson et al. 2014; 
Alvarado et al. 2016), to more complex approaches, 
in which interim parameters are derived from linear 
interpolation based on binary plots (Schmith et al. 
2017). 
To demonstrate the use of two of these 
classification diagrams, we compare two 
morphometric data sets obtained from silhouettes of 
ash particles from the narrow +4ϕ (88-63 µm) grain 
size fraction (see Online Resource 2). The first data 
set, denoted “Iki”, describes the shape of grains 
produced during continuous lava fountaining 
episodes of the 1959 Kīlauea Iki eruption (Richter 
et al. 1970; Mueller et al. 2018, 2019). The second 
data set was obtained from ash particles produced 
in significant amounts during the 2012 eruption of 
Havre, a silicic deep-sea volcano (Carey et al. 
2018). Based on morphometric comparisons with 
samples from lab experiments, it was found that a 
phreatomagmatic mechanism played a key role in 
the ash generating episode(s) of this eruption 
(Dürig et al. 2020b, c). Table 8 presents an 
overview of the resulting shape parameters 
Circ_DL, Elo_DL, Rec_DL and Com_DL. 
Figure 9a shows the classification diagram by 
Büttner et al. (2002) plotted with data from the two 
demonstration sets. This plot has been designed to 
distinguish grains that were the product of brittle 
fragmentation from those generated under ductile 
fragmentation conditions. While the authors 
originally identified a threshold of approximately 
0.88 on the y-axis for shoshonite clasts (Büttner et 
al. 2002), a revised value of 0.71 was suggested in a 
later study for Havre ash (Dürig et al. 2018). Both 
thresholds are displayed in Figure 9a as dashed 
horizontal lines. When using the threshold 
suggested by Dürig et al. (2018), the majority of the 
Iki samples fall into the ductile field, while the bulk 
of Havre samples plot in the brittle field. There are, 
however, also outliers in both data sets, which 
demonstrate the necessity of using sufficiently large 
numbers of pyroclasts to extract useful information 
from these types of diagrams. Note also that the 
morphometric variance among the Iki grains is 
larger than that of Havre particles, reflecting the 
considerably larger standard deviations of the 
underlying shape parameters (see Table 8).  
Figure 9b presents an alternative classification 
diagram, following the suggestion of Murtagh and 
White (2013). Here, the suggested boundary is an 
ascending line (illustrated as a dashed line in Fig. 
9b), that separates morphometric data points from 



particles of phreatomagmatic origin (left side) from 
those of magmatic origin (right side). For our test 
samples, the diagram is fairly successful in sorting 
the two populations by their eruptive mechanism, 
especially when focussing on the mean values of 
both data sets. However, rather large minorities of 
14 (27.5%) and 12 (25%) grains from the Iki and 
Havre samples, respectively, are sorted into the 
‘wrong’ sector. We also note that there is a 
substantial overlap between the two samples when 
taking their standard deviations into account. In our 
demonstration this does not affect the overall 
outcome, because the samples studied here are 
representing end members on the scale of eruptive 
styles. For other samples, the results might be far 
less clear, rendering the method unreliable 
(Schmith et al. 2017). The same applies to the 
discrimination diagram by Büttner et al. (2002). 
Although it has been widely used for distinguishing 
between phreatomagmatic and magmatic grains 
(e.g., Németh and Cronin 2011; Murtagh and White 
2013; Iverson et al. 2014; Alvarado et al. 2016), a 
number of studies found that it is difficult to 
identify a universal threshold that defines a clear 
distinction between fields. This probably reflects 
the roles of magma chemical composition and 
physical magma components (melts, bubbles and 
crystals) on the mechanical behaviour of magma 
under stress, which is the direct control on shapes 
of pyroclasts (Murtagh and White 2013; Schmith et 
al. 2017; Dürig et al. 2018). Morphometric analyses 
can therefore only provide a piece of the puzzle, to 
be considered along with whole-deposit 
componentry and granulometry (Mele et al. 2020), 
and analysis of particles' microtextures and surface 
features (White and Valentine 2016; Ross et al. 
2021). 
 
Discriminant function analysis (DFA) 
As a multivariate statistical method that classifies 
data sets and provides error likelihoods of 
classification, discriminant function analysis (DFA) 
has potential to establish relationships between 
particle morphology and fragmentation processes or 
eruption styles. DFA requires data sets with known 
group membership (e.g., data sets from known 
purely single-process magmatic or single-process 
phreatomagmatic fragmentation processes). 
Similar to PCA and factor analysis, as a first step, 
the discriminant function analysis seeks to reduce 
the number of variables by combining the original 
variables in a way that maximizes the differences 
between groups and minimizes the variance within 
each group (Davis 2002). Next, the algorithm finds 
a discriminant function, which is tailored to 
separate the data into the previously defined 
groups, i.e. to discriminate between them. The 

predictive quality of this function can be tested by 
computing the percentage of known data sets that 
are correctly classified, and this success percentage 
is then listed in classification matrices. Based on 
the discriminant function, the DFA is subsequently 
able to predict the group-membership of 
unclassified data sets. Furthermore, the structure of 
the separation function provides insights into which 
of the variables (i.e. parameters) has the most 
discriminatory power (Avery et al. 2017). 
A caveat, additional to starting with data sets of 
known origin, is that DFA requires normally 
distributed data and independent variables for both 
the initial data sets and those subsequently 
investigated. A way to obtain independent variables 
is to first apply a PCA then use the resulting 
principal components as input. When reporting 
results from a DFA, researchers should provide 
comprehensive information, including the 
definition of grouping variables, normality of data, 
equality of co-variance matrix, missing data and 
outliers, variables used, correlation matrices, 
software and version used, classification matrices, 
discriminant function and classification function 
weights (for details, see e.g., Huberty and Hussein 
2003).  
 
Supervised machine learning 
Supervised machine learning methods can be 
somewhat similar in aim to what has been 
described for DFA in which the algorithms are 
trained to recognize membership in a group. 
Machine learning approaches that have been used 
for classification of particle shapes are, e.g., 
decision-trees, random forest (Tunwal et al. 2018) 
and convolutional neural networks (Shoji et al. 
2018). In the first method, a Classification And 
Regression Trees (CART) algorithm uses the 
training data to build a decision tree, which then is 
applied as a predictive model to classify the 
unknown data set (Loh 2011). A fixed decision tree 
might fit too exactly to the noise-affected training 
data and not take stochastic variations of the test 
data into account (“overfitting”). To counter this 
effect, a random forest algorithm can be used, 
which builds and combines large numbers of 
decision trees based on random selection of shape 
parameters and sampling of training data (Breiman 
2001). Convolutional neural networks (CNN) take 
an alternative path and are specifically designed for 
image recognition. CNN algorithms process pixel 
intensities in several layers, where the early layers 
focus on simple features and later layers recognize 
patterns of increased complexities. By using large 
numbers of particle images as training data, CNN 
can classify new particles according to the acquired 
model. Potentially we could teach an algorithm to 



distinguish magmatic from phreatomagmatic 
particles (Shoji et al. 2018). Future applications 
might combine machine learning with some of the 
previously discussed statistical techniques. For 
example, PCA and the k-means procedure might be 
used as a first step to obtain training data, before 
applying CNN. Similar approaches have already 
been successfully applied in other fields of research 
(e.g., Tang et al. 2017; Rustam et al. 2020). A 
disadvantage of machine learning approaches is, 
however, that the algorithms are somewhat like 
“black boxes” and as such might lead to 
misinterpretation by the user.  
 
Conclusions and Outlook 
We have provided an overview of the statistical 
methods commonly used to analyse morphometric 
data sets. Table 9 summarizes the purpose, 
mathematical pre-conditions and output of each of 
the previously discussed tests and algorithms. Our 
aim is to explain these techniques in a way 
accessible to geologists, and we have illustrated the 
methods using simple particle shapes. With this 
statistical toolkit at hand, morphometric data sets 
can be explored while simultaneously 
understanding the mathematical limitations that 
attach to each of the methods applied. 
Although we present a broad overview for 
volcanology, the presented analytical tools 
represent only a small selection of all techniques 
available. With ever-increasing computational 
capabilities, machine learning techniques may 
become more and more important as 
complementary analytical tools, leading to more-
complex routines for shape analysis. Together with 
the ongoing development of 3D scanning 
technologies, the near future promises new 
advances in the quest to decode the volcanological 
information ingrained in the shapes of volcanic 
particles.  
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Tables 
 
Table 1 Example for basic descriptive statistics of the morphometric data sets, based on N samples. The particles 
are shown in Figure 1 and 2. Note that this data serves only for demonstration purposes. For representativity of 
“real” volcanic ash analyses, more particles (i.e., larger sample sizes N) would be required. 
 

data set 

N Minimum Maximum Mean 
Std. 

Deviation Skewness Kurtosis 

     Statistic Std. Error Statistic Std. Error 
a Circ_DL 12 1.07 1.35 1.13 0.07 2.71 0.64 8.21 1.23 

Rec_DL 12 0.83 1.03 0.86 0.06 3.07 0.64 9.77 1.23 

Com_DL 12 0.51 0.99 0.74 0.11 0.21 0.64 3.76 1.23 

Elo_DL 12 1.06 2.41 1.50 0.32 2.18 0.64 6.90 1.23 

b Circ_DL 4 1.63 3.19 2.39 0.67 0.12 1.01 -1.20 2.62 

Rec_DL 4 1.18 2.30 1.73 0.48 0.14 1.01 -1.24 2.62 

Com_DL 4 0.66 0.67 0.66 0.00 1.83 1.01 3.43 2.62 

Elo_DL 4 1.31 1.44 1.39 0.06 -1.23 1.01 0.77 2.62 

c Circ_DL 8 1.05 1.81 1.37 0.29 0.41 0.75 -1.57 1.48 

Rec_DL 8 0.83 1.26 1.02 0.17 0.32 0.75 -1.70 1.48 

Com_DL 8 0.62 0.79 0.72 0.07 -0.33 0.75 -1.74 1.48 

Elo_DL 8 1.29 1.50 1.40 0.07 -0.04 0.75 -0.58 1.48 

d Circ_DL 12 1.07 1.35 1.13 0.08 2.35 0.64 5.91 1.23 

Rec_DL 12 0.83 1.07 0.86 0.07 3.38 0.64 11.59 1.23 

Com_DL 12 0.50 1.00 0.74 0.11 0.20 0.64 4.56 1.23 

Elo_DL 12 1.00 2.29 1.48 0.30 1.78 0.64 6.07 1.23 

e Circ_DL 8 1.10 1.55 1.32 0.15 0.06 0.75 -0.78 1.48 

Rec_DL 8 0.84 1.12 0.98 0.09 -0.01 0.75 -0.79 1.48 

Com_DL 8 0.70 0.79 0.75 0.03 -0.02 0.75 -0.83 1.48 

Elo_DL 8 2.05 2.26 2.15 0.07 0.27 0.75 -1.09 1.48 

h Circ_DL 12 1.33 4.61 2.43 0.98 1.14 0.64 0.98 1.23 

Rec_DL 12 0.84 2.64 1.43 0.53 1.27 0.64 1.30 1.23 

Com_DL 12 0.41 0.73 0.46 0.09 2.94 0.64 9.10 1.23 

Elo_DL 12 1.08 2.46 1.92 0.37 -0.89 0.64 1.60 1.23 

r Circ_DL 7 1.14 1.73 1.44 0.21 -0.10 0.79 -1.19 1.59 

Rec_DL 7 1.00 1.41 1.21 0.15 -0.18 0.79 -1.20 1.59 

Com_DL 7 0.87 1.00 0.93 0.05 0.15 0.79 -1.02 1.59 

Elo_DL 7 1.31 1.40 1.35 0.03 -0.18 0.79 0.72 1.59 

s Circ_DL 8 1.27 2.98 2.12 0.67 -0.13 0.75 -1.58 1.48 

Rec_DL 8 0.86 1.23 1.05 0.15 -0.33 0.75 -1.79 1.48 

Com_DL 8 0.20 0.58 0.36 0.15 0.67 0.75 -0.94 1.48 

Elo_DL 8 1.61 2.86 2.15 0.43 0.18 0.75 -0.32 1.48 

   



Table 2: List with examples of interpretative diagrams and diagrams used to discriminate between particles 
formed by phreatomagmatic vs. magmatic fragmentation. Morphometric parameters are those used in the 
presenting publication (fourth column). In addition, the terms applied to the shape parameters used in the open 
freeware PARTISAN (Dürig et al. 2018) are provided in the fifth column. 
 

Introduced by Purpose Plot (y-axis; x-axis) Morphometric system PARTISAN 
output variables 

Büttner et al. 
(2002) 

Brittle vs ductile 
(phreatomagmatic 
vs magmatic) 

Rectangularity x Compactness;  
Elongation x Circularity 

Dellino and La Volpe 
(1996) 

Rec_DL x 
Com_DL; 
Elo_DL x 
Circ_DL 

Murtagh and 
White (2013) 

Phreatomagmatic 
vs magmatic 

Elongation x Compactness;  
Rectangularity x Circularity 

Dellino and La Volpe 
(1996) 

Elo_DL x 
Com_DL; 
Rec_DL x 
Circ_DL 

Cioni et  al. 
(2014) 

Interpretative 
binary diagram 

Ellipse Aspect Ratio; Solidity Cioni et  al. (2014) AR_CI; Sol_CI 

Leibrandt and Le 
Pennec (2015) 

Interpretative 
binary diagram 

Convexity; Circularity Leibrandt and Le 
Pennec (2015) 

Con_LL;Circ_LL 

Liu et al. (2015) Interpretative 
binary diagram 

Convexity; Solidity Liu et al. (2015) Con_LI; Sol_LI 

Schmith et al. 
(2017) 

Elongated vs non-
elongated grains; 
slope of linear 
interpolation 
defines “regularity 
index” 

Regularity; Feret Aspect Ratio Schmith et al. (2017) Reg_SC; AR_SC 

Schmith et al. 
(2017) 

Phreatomagmatic 
vs magmatic 

regularity index; percentage of 
elongated grains 

Schmith et al. (2017)  

 
 
 
Table 3: Results for Levene tests and t-tests used to compare the morphometric data sets “a” with “c”. Numbers 
are p-values in percent. When the p-value is below the level of significance α (often 5%), the tested variances (in 
case of Levene-test) or means (in case of a t-test) can be inferred to be significantly different. A graphic form of 
displaying these results is presented on Figure 4.  
 
α = 5% Circ_DL Rec_DL Com_DL Elo_DL 
Levene test 0.13 0.23 54.41 6.88 
t-test 6.03 4.13 46.16 71.50 



Table 4: Example for ANOVA results. Resulting F- and p-values are displayed. A p-value below the level of 
significance (here 5%) indicates a significant difference. For example, when comparing the morphometric data 
sets “a”, “b”, “c”, and “e” (two centre columns), ANOVA reveals significant differences in circularity 
(Circ_DL), rectangularity (Rec_DL) and elongation (Elo_DL). This result implies that at least two of the four 
samples are different in these parameters.  
 
morphometric 

data sets 
a,b,c a, b, c, e a, b, c, e, h, r, s 

α = 5% F p (%) F p (%) F p (%) 
Circ_DL 25.151 <0.05 20.954 <0.05 8.72 <0.05 
Rec_DL 26.039 <0.05 22.021 <0.05 7.626 <0.05 
Com_DL 1.144 33.8 1.196 32.9 37.514 <0.05 
Elo_DL 0.545 58.8 22.988 <0.05 13.574 <0.05 

 
 
Table 5: Dimensional reduction by principal component analysis (PCA) with “varimax” rotation: In this 
example, PCA was conducted via software SPSS®, based on 8 data sets (“a, b, c, d, e, h, r, s”) and using the four 
shape parameters employed by Dellino and La Volpe (1996) as variables. Thus, PCA initially extracted four 
principal components from the four original shape parameters Circ_DL, Rec_DL, Com_DL and Elo_DL. The 
total variances of the principal components are denoted “Eigenvalues”. In order to reduce the number of 
explaining parameters one could follow the Kaiser normalization criterion (Kaiser 1958; Davis 2002), which 
suggests consideration of only principal components with eigenvalue 1 or larger. Using the first two components 
instead of the original four shape parameters would reduce the dimension by two, but still be sufficient to 
explain ~93.6% of the total variance. 

Component 

Initial Eigenvalues 

Total 
% of 

Variance 
Cumulative 

% 
1 2.471 61.77 61.77 

2 1.273 31.81 93.59 

3 0.240 6.009 99.59 

4 0.017 0.41 100.00 

 
 
Table 6: Components and rotated-component matrices: values represent the Pearson correlation between 
variables and components, denoted “factor loadings”. The original components show cross-correlations, which 
complicate interpretations. On the right, the redistributed factor loadings after a so called “varimax” rotation 
(Davis 2002) are shown. Now Component 1 is dominantly measuring circularity (Circ_DL) and rectangularity 
(Rec_DL), while Component 2 can be seen as mainly a measure of compactness (Com_DL) and elongation 
(Elo_DL).    
 

 Components Rotated components 
 1 2 1 2 
Circ_DL 0.940 0.328 0.932 0.348 
Rec_DL 0.740 0.649 0.984 -0.026 
Com_DL -0.842 0.420 -0.379 -0.861 
Elo_DL 0.576 -0.754 -0.039 0.948 

  



Table 7: Component score coefficient matrix resulting from PCA, using four shape parameters as input variables 
and the “varimax” rotation (see also Table 5). The principal component score of a sample is calculated by 
linearly combining the sample-specific shape parameter values, weighted with the according component score 
coefficients.  
 

Component Score Coefficient Matrix 
 Component 

1 2 
Circ_DL 0.457 0.045 
Rec_DL 0.556 -0.201 
Com_DL -0.051 -0.472 
Elo_DL -0.199 0.604 

 
 
Table 8: Basic descriptive statistics of the morphometric data sets used to plot the discrimination diagrams 
shown in Figure 9. The shape parameters were obtained from silhouettes of ash particles sampled from the 1959 
Kīlauea Iki (“Iki”) and the 2012 Havre eruption. 
 

Data set 

N Minimum Maximum Mean 
Std. 

Deviation Skewness Kurtosis 

     Statistic Std. Error Statistic Std. Error 
Iki Circ_DL 51 1.05 2.69 1.74 0.39 0.26 0.33 0.06 0.66 

Rec_DL 51 0.83 1.31 1.03 0.12 0.43 0.33 -0.43 0.66 
Com_DL 51 0.33 0.83 0.57 0.14 0.38 0.33 -0.82 0.66 
Elo_DL 51 1.14 18.39 3.69 3.32 2.83 0.33 8.83 0.66 

Havre Circ_DL 48 1.13 1.70 1.33 0.14 0.90 0.34 0.33 0.67 
Rec_DL 48 0.90 1.23 0.98 0.07 1.58 0.34 3.00 0.67 
Com_DL 48 0.55 0.86 0.76 0.06 -1.33 0.34 2.86 0.67 
Elo_DL 48 1.24 5.13 2.19 0.84 1.75 0.34 3.15 0.67 

 
  



Table 9: List of methods, fields of application, necessary condition(s) and main output. Brackets indicate that a 
method remains fairly robust if conditions are violated. 

Method Purpose Condition Output Additional information to 
be disclosed 

F-test Testing if variances of two 
data sets are equal 

(Normal distribution) p-value α, sample sizes (N) 

Levene test Testing if variances of 
multiple data sets are equal 

 p-value α, N 

Student’s t-test Testing 2 data sets of equal 
variances for significant 
differences 

(Normal distribution) p-value α, N 

Welch’s t-test  Testing 2 data sets of 
unequal variances for 
significant differences 

(Normal distribution) p-value α, N 

ANOVA Testing 3 or more data sets 
for significant differences  

(Normal distribution) p-value α, N, post-hoc correction 
(if applied) 

Equivalence 
test 

Testing 2 data sets for 
statistical similarities 

(Normal distribution) Yes/no, D-
value 

α, Dmax values,  standards 
used for calibration 

Factor analysis Dimensionality reduction, 
revealing underlying “latent” 
variables 

Normal distribution; 
otherwise correction 
for non-normality 
needed, e. g., 
adjustment by  Satorra-
Bentler (1994) 

Factor scores Type of factor analysis, 
factor loadings, 
eigenvectors, score 
weights 

Principal 
component 
analysis 

Dimensionality reduction (Normal distribution) Principal 
components 
PC1, PC2 

Decision criterion, type of 
rotation, Eigenvalues, 
component score 
coefficients 

Hierarchical 
cluster analysis 

Sorting of individual grains 
based on their Euclidian 
distance 

 Dendrogram 
(dissimilarity 
axis) 

Type of cluster analysis, 
measure of dissimilarity, 
linkage 

K-means 
procedure 

Sorting of individual grains, 
based on their distance from 
k centroids, where number k 
is pre-defined; data 
reduction: resulting cluster 
centroids can be used instead 
of individual data points. 

Normal distribution Sorting of 
grains into 
the k clusters; 
coordinates 
of the k 
cluster 
centroids  

Number of clusters k; 
coordinates of the initial 
seeding points 

DAPM Sorting of data sets, based on 
the outcome of sequential 
ANOVA, t-tests and 
equivalence tests 

(Normal distribution) Dendrogram 
(dissimilarity 
axis), 
distance 
matrices X 

Used shape parameters, α, 
Dmax values, standards 
used for calibration, type 
of linkage 

Discriminant 
analysis 

Discriminating data sets Normal distribution, 
independent variables 

Classification 
matrix 

Definition of grouping 
variables, variables used, 
co-variance matrix, 
missing data, outliers, 
correlation matrices, 
software, discriminant 
function, classification 
function weights 

 

  



Figures 

 
 
Fig. 1 Binary images (silhouettes) of “artificial” objects used for demonstration. The names of particles are 
indicated. The compiled morphometric data sets are labelled “a”, “b”, ”c”, ”e”, ”h”, ”r” and “s”. 



 
 
Fig. 2 Binary images of data set “d”. Using e-tests and DAPM we test whether “d” is statistically equivalent with 
“a” from Figure 1. 
  



 

 
 
Fig. 3 Typical plots for presenting statistical results. a) Histogram showing the frequency distribution of 
elongation for data set “h”. b) The data set-specific ranges of elongation are displayed as boxplots. The median is 
marked as a red central bar, and the 25th and 75th percentiles are indicated by the bottom and top edges of the 
blue boxes, respectively. The whiskers show the overall range covering all data points not considered outliers, 
while the latter are presented by red cross symbols. In c) and d) two examples of binary plots are shown. For 
four shape parameters, there are six combinations of binary plots. Data points for four objects are marked in the 
diagrams c) through f). e) With principal component analysis, the information of four shape parameters can be 
visualized in condensed form. The factor loadings are illustrated by green vectors. They illustrate how the 
original variables influence the principal components. f) After “varimax” rotation, the data can be easier 
interpreted as products of the original shape parameters. While rotated component 1 is almost entirely depending 
on Circ_DL and Elo_DL, rotated component 2 is dominantly influenced by Com_DL and Rec_DL. 



 
 
Fig. 4 Levene test (a) and two-tailed t-test (b) results plotted for data sets “a” and “c” in four shape parameters 
and a significance level  of 5%. The figure is a screenshot from DendroScan. a) For Levene tests, the null 
hypothesis H0 is that the variances of the tested data sets are equal. If the p-value is smaller than , then H0 can 
be rejected. Here, the variances for the tested morphometric data sets are homogeneous in elongation (Elo_DL) 
and compactness (Com_DL), but heterogeneous for rectangularity (Rec_DL) and circularity (Circ_DL). b) The 
two-tailed t-tests works with the null hypothesis H0 that the tested data are from the same population. 
Differences between the data sets are proven to be significant, if the p-value is smaller than  and H0 is rejected. 
Here, the data sets “a” and “c” are significantly different in Rec_DL.  
 
  



 
 
Fig. 5 DendroScan screenshot presenting results of e-tests. Here, the morphometric data sets “AA”, “AB” and 
“AC” (see Online Resource 1) are used as standards. The computed Dmax values lie within the equivalence 
margins (indicated in the right diagram by a black line). Therefore, the e-tests show that the data sets “d” (Fig. 2) 
and “a” (Fig. 1) are statistically equivalent in all four tested shape parameters. 
  



 
 
Fig. 6 Dendrogram illustrating the results of an agglomerative cluster analysis on the data sets “a, b, c, d”, 
conducted with the statistical program SPSS®. Squared Euclidean distance with complete linkage is used as 
measure of distance. Note that in this case the statistical equivalence of data sets “a” and “d” (which can be 
verified by e-tests), is not easy to identify by hierarchical cluster analysis. 
  



 
 
Fig. 7 Demonstration of k-means procedure, applied to data sets “a” (squares), “d” (triangles) and “e” (circles). 
Colour indicates membership of a certain cluster. The crosses represent the clusters’ centroids. a) For k = 3, most 
data points from “e” were assigned to cluster 1 (red), while the bulk of “a” and “d” was classified as cluster 2 
(blue). Only two data points were assigned to cluster 3 (green). b) For k=2 , the bulk of data grouped together is 
the objects from “e” as cluster 1 (blue), whereas cluster 2 is exclusively composed of “a” and “d” objects.  
 
 
 

 
 
Fig. 8 Results of DAPM for the morphometric data sets “a”, “b” , “c”, “d”, “e”, “h”, “r”, “s” (see also Fig. 1 and 
Fig. 2), when using the four shape parameters Circ_DL, Rec_DL, Com_DL and Elo_DL and a level of 
significance of 5%. For computation of Dmax, the data sets “AA”, “AB” and “AC” were used. The DAPM-based 
dendrogram shows data sets “a” and “d” to be equivalent and identifies 4 main clusters. Output was produced by 
the freeware DendroScan. The green bar on the left side indicates the “statistical reliability index” (SRI). With 
85, this DAPM output can be seen as very reliable (Dürig et al. 2020a). The corresponding files with X-matrix 
and Dmax values can be found in Online Resource 1.  
  



 
Fig. 9 Two examples of classification diagrams used to identify the eruption style by means of particle shape 
analysis. a) Discrimination plot by Büttner et al. (2002). Both thresholds suggested by Büttner et al. (2002) and 
Dürig et al. (2018) are shown as dashed horizontal lines, dividing the plot in an upper and a lower sector, 
respectively. Data points in the upper sector indicate that particles have been generated by brittle fragmentation, 
while particles produced by ductile fragmentation mechanisms are characterized by shape parameters that fall in 
the lower sector. b) The diagram suggested by Murtagh and White (2013) uses the dashed line as threshold to 
discriminate between phreatomagmatic (left side) and magmatic grain shapes (right side). In both diagrams, the 
standard deviations for both populations are indicated by error bars, with centres indicating their mean values.  


