Expertises
Imagerie quantique
- Professeur
- Titulaire de la Chaire du ministère de l’Économie, de l’Innovation et de l’Énergie du Québec en photonique quantique
Téléphone
514 228-6900
Courriel
bienvenu.ndagano@inrs.ca
Centre Énergie Matériaux Télécommunications
1650, boul. Lionel-Boulet
Varennes (Québec) J3X 1P7
Canada
Intérêts de recherche
Le programme de recherche du Professeur Bienvenu Ndagano est centré sur l’exploitation des propriétés multi-dimensionnelles des photons à des fins de communication, imagerie et détection. Notamment, ce programme de recherche explore :
- Ingénierie des états intriqués dans le domaine spatial et temporel
- Transport des états intriqués dans des milieux diffusants
- Microscopie quantique
- Détection des états intriqués en haute dimensions
- Imagerie des corrélations quantiques
- Détection quantique assistée par des processus non-linéaires
- Transfer non-linéaire d’intrication quantique en haute dimension
(a) Engineered sample etched in glass and measured with a profilometer. (b) The sample is not visible on the intensity image after illumination. (c) Low-resolution correlation image of the sample obtained from coincidence counting. (d) High-resolution correlation image of the sample obtained from combining low resolution images of the sample shifted transversally. (e) depth profile of the sample estimated from the high-resolution correlation image. Nature Photonics 16, 384–389 (2022)
(a) Two equivalent quantum and classical scenarios in which Alice send a photon from a non-separable state; in the quantum picture, Alice sends a photon from an entangled pair while in the classical picture, she sends one photon, of which only one degree of freedom is affected. (b) The degree of non-separability in both scenarios varies identically with perturbation strength (SR). Nature Photonics 13, 397–402 (2017)
(a) Shows the intensity of a twin beam of photon pairs onto a SPAD camera sensor. From many intensity measurement, one reconstructs the spatial conditional intensity distribution of a photon from a pair, given that it’s partner was previously measured at (b) A or (c) B. npj Quantum Information 6, 94 (2020)
Le Professeur Bienvenu Ndagano est titulaire de la Chaire du ministère de l’Économie et de l’Innovation du Québec en photonique quantique (2023-2026).
Originaire de Bukavu en République Démocratique du Congo, Bienvenu Ndagano détient un doctorat (2018) en physique de l’Université du Witwatersrand en Afrique du Sud. Il a travaillé comme chercheur postdoctoral à l’Université de Glasgow de 2018 à 2021, avant de rejoindre le Centre Fraunhofer pour la Photonique Appliquée, toujours à Glasgow de 2021 à 2023. Il prend ses fonctions de professeur agrégé au Centre Énergie Matériaux Télécommunications de l’Institut National de la Recherche Scientifique à Varennes en 2023.
Projets de recherche en cours ou terminés
- Imagerie quantique à base de LIDAR
- Conversion non-linéaire de l’intrication en haute dimensions
- Imagerie quantique non-linéaire
- Ingénierie d’état intriqués en haute dimensions dans des guides d’ondes optiques
En plus de la liste ci-dessus, d’autres opportunités de recherche peuvent être discutées
Activités scientifiques
- Subvention CRSNG découverte, 2023-2028
- Subvention Alliance Consortium, 2023-2028
- Subvention Photonique Quantique Québec, 2023-2025
- Chaire du MEI en Photonique Quantique, 2023-2026
Collaborations
- Professeurs Roberto Morandotti, José Azaña, Centre Énergie, Matériaux Télécommunications de l’INRS
- Professeurs Benjamin Sussman, Ebrahim Karimi and Robert Boyd, Université d’Ottawa
- Professeur Daniele Faccio, Université de Glasgow
- Professeur Andrew Forbes, Université du Witwatersrand
Publications
Defienne, P. Cameron, B. Ndagano, A. Lyons, M. Reichert, J. Zhao, E. Charbon, J.W. Fleischer and D. Faccio, “Pixel super-resolution using spatially entangled photon pairs”, Nature Communications 13, 3566 (2022)
Ndagano, H. Defienne, D. Branford, Y.D. Shah, A. Lyons, N. Westerberg, E.M. Gauger and D. Faccio, “Quantum microscopy based on Hong–Ou–Mandel interference”, Nature Photonics 16, 384-389 (2022)
Defienne, B. Ndagano, A. Lyons, D. Faccio, “Polarization entanglement-enabled quantum holography”, Nature Physics 17, 591 (2021)
Ndagano, H. Defienne, A. Lyons, I. Starshynov, F. Villa, S. Tisa and D. Faccio, “Imaging and certifying high-dimensional entanglement with a single-photon avalanche diode camera”, npj Quantum Information 6, 94 (2020)
Otte, I. Nape, C. Rosales-Guzmán, C. Denz, A. Forbes and B. Ndagano, “High-dimensional cryptography with spatial modes of light: tutorial”, Journal of the Optical Society of America B 37, A309 (2020)
Ndagano and A. Forbes, “Entanglement distillation by Hong-Ou-Mandel interference with orbital angular momentum states”. APL Photonics 4, 016103 (2019)
Forbes, A. Aiello, and B. Ndagano, “Classically Entangled Light”, Progress in Optics 64, 99 (2019)
Rosales-Guzmán, B. Ndagano and A. Forbes, “A review of complex vector light fields and their applications”, Journal of Optics 20, 123001 (2018)
P. J. Lavery, M. M. Abadi, R. Bauer, G. Brambilla, L. Cheng, M. A. Cox, A. Dudley, A. D. Ellis, N. K. Fontaine, A. E. Kelly, C. Marquardt, S. Matlhane, B. Ndagano, F. Petruccione, R. Slavík, F. Romanato, C. Rosales-Guzmán, F. S. Roux, K. Roux, J. Wang and A. Forbes, “Tackling Africa’s digital divide”, Nature Photonics 12, 249-252 (2018)
Otte, C. Rosales-Guzmán, B. Ndagano, C. Denz and A. Forbes, “Entanglement beating in free space through spin-orbit coupling”, Light: Science & Applications 7, 18009 (2018)
Ndagano and A. Forbes, “Characterization and mitigation of information loss in a six-state quantum-key-distribution protocol with spatial modes of light through turbulence”, Physical Review A 98, 062330 (2018)
Ndagano, B. Perez-Garcia, F. S. Roux, M. McLaren, C. Rosales-Guzmán, Y. Zhang, O. Mouane, R. I. Hernandez-Aranda, T. Konrad and A. Forbes, “Characterizing quantum channels with non-separable states of classical light”, Nature Physics 13, 397 (2017)
Ndagano, I. Nape, B. Perez-Garcia, S. Scholes, R. I. Hernandez-Aranda, T. Konrad, M. P. J. Lavery and A. Forbes, “A deterministic detector for vector vortex states”, Scientific Reports 7, 19882 (2017)
Ndagano, I. Nape, M. A. Cox, C. Rosales-Guzmán and A. Forbes, “Creation and characterization of vector vortex modes for classical and quantum communication”, Journal of Lightwave Technology 36, 292 (2017)
Toninelli, B. Ndagano, A. Valles, B. Sephton, I. Nape, A. Ambrosio, F. Capasso, M. J. Padgett and A. Forbes, “Concepts in quantum state tomography and classical implementation with intense light: a tutorial”, Advances in Optics and Photonics 11, 67 (2017)
Ndagano, N. Mphuthi, G. Milione and A. Forbes, “Comparing mode-crosstalk and mode-dependent loss of laterally displaced orbital angular momentum and Hermite–Gaussian modes for free-space optical communication”, Optics Letters 42, 4175 (2017)
Nape, B. Ndagano and A Forbes, “Erasing the orbital angular momentum information of a photon”, Physical Review A 95, 053859 (2017)
Ndagano, H. Sroor, M. McLaren, C. Rosales-Guzmán and A. Forbes, “Beam quality measure for vector beams”, Optics Letters 41, 3407 (2016)
Trichili, C. Rosales-Guzmán, A. Dudley, B. Ndagano, A. Ben-Salem, M. Zghal and A. Forbes, “Optical communication beyond orbital angular momentum”, Scientific Reports 6, 27674 (2016)
Brüning, B. Ndagano, M. McLaren, S. Schröter, J. Kobelke, M. Duparré and A. Forbes, “Data transmission with twisted light through a free-space to fiber optical communication link”, Journal of Optics 18, 03LT01 (2016)
Ndagano, R. Brüning, M. McLaren, M. Duparré and A. Forbes, “Fiber propagation of vector modes”, Optics Express 23, 17330 (2015)